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ABSTRACT 

 

Over the past years we have developed a tomographic technique for using heliospheric remote sensing observations (i.e. 
interplanetary scintillation and Thomson scattering data) for the reconstruction of the three-dimensional solar wind 
density and velocity in the inner heliosphere. We describe the basic algorithm on which our technique is based. To 
highlight the details of the reconstruction algorithm we specifically emphasize the implementation of corotating 
tomography using IPS g-level and IPS velocity observations as proxies for the solar wind density and velocity, 
respectively. We provide some insight into the modifications required to expand the technique into a fully time-
dependent tomography, and to use Thomson scattering brightness (instead of g-level) as a proxy for the solar wind 
density. 
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1.  INTRODUCTION 

Heliospheric remote sensing provides a means for sampling the solar wind plasma over a large range of elongations 
relative to the Sun. This provides global information about the three-dimensional density and velocity structure of the 
solar wind in the inner heliosphere, including regions over the solar poles that are difficult to access by any other means. 
In principle, this provides an opportunity for directly reconstructing the solar wind structure in the inner heliosphere. The 
main problem that must be addressed is the ambiguity introduced by line-of-sight integration. Each observation is the 
integrated effect of an unknown distribution of material along the line of sight. Tomography provides a methodology to 
resolve this ambiguity and reconstruct the distribution of material in three-dimensions in cases where observations from 
multiple perspectives are available. 

 
We have developed a tomography technique that uses heliospheric remote sensing data and depends on rotation of the 
Sun (similar to tomography with coronal data1,2), but also outward motion of structures in the solar wind to obtain 
different perspectives of structures embedded in the solar wind. This technique requires continuous observations from a 
single perspective only, thus making it applicable to several existing remote sensing data sets. We have applied this 
technique successfully to interplanetary scintillation (IPS) observations3 and Thomson scattering observations4,5. The 
technique allows us to determine the large-scale three-dimensional extents of solar wind structures, and forecast their 
arrival at Earth. 
 
In this paper the basic algorithm underlying our tomographic technique is discussed in detail. Here we emphasize the use 
of IPS observations. These measurements have been used to probe solar wind features with ground-based meter-
wavelength radio observations6,7. The scintillation is caused by small-scale (~200km) density variations in the solar 
wind. IPS provides information of the solar wind velocity through correlation of IPS signals from multi-site radio 
arrays8,9,10. The scintillation measured by single-site IPS arrays provides a proxy for the heliospheric density11,12. 
 
We will also assume that the solar wind density and velocity is static (time-independent) in a reference frame that 
corotates with the Sun. This restricts the usefulness of this corotating tomography technique to remote sensing data 
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obtained during periods when the solar wind evolves on time scales longer than one Carrington rotation, a condition 
occurring primarily near solar minimum. 
 
In Section 2 we provide the basic equations underlying the numerical algorithm. In Section 3 the numerical 
implementation is discussed, including the heliospheric grid structure used, and the discretization of the line-of-sight 
integrals. The iterative process is described in Section 4, including the kinematic solar wind model that is at the core of 
this tomography technique. In Section 5 we briefly discuss several possible extensions to this tomography, such as the 
implementation of a time-dependent version of the technique, and the use of Thomson scattering data instead of g-level 
data as a proxy for the solar wind density. 

2.  IPS REMOTE SENSING DATA 

The observational data used in the tomographic reconstruction are the IPS g-level (or ‘disturbance factor’) and IPS 
velocity W observations. Each observation represents a line-of-sight integration through the solar wind in the inner 
heliosphere. To date we have used g-level data from the IPS arrays in Cambridge (UK), Ooty (India), and more recently 
Nagoya (Japan); W data have been available from Nagoya and Ooty. The purpose of the reconstruction is to create a 
model 3D heliosphere (i.e., a density and velocity distribution) that reproduces these observations as well as possible. 
The reconstruction uses an iterative scheme to minimize the differences between actually observed and calculated model 
values. Since the reconstruction only involves the solar wind density n and the (radial) solar wind outflow velocity V, the 
observed quantities g and W need to be related to these two solar wind parameters. 

The g-level13 is related to the scintillation index m: 

mmg = . (1) 

m is the instantaneous, observed scintillation index for an IPS source; <m> is the expected ‘quiet’ scintillation index, 
based on an average of past source observations as a function of solar elongation. g depends only weakly on elongation 
(or heliocentric distance). The scintillation index is defined as an integration along the entire line of sight: 

( )∫
∞

=
0

22 )( snsdsm δρ . 
(2) 

The ‘weight’ function ( )sρ  depends on observing wavelength, the angular size of the radio source, and the turbulence 

power spectrum14. We use the same expression as given in Eq. 2 of Jackson et al. (2000)3 with a power law slope close 
to 3.0. The small-scale density fluctuations ( )snδ  along the line of sight cause the scintillation. ( )snδ  depends on local 

plasma properties, not only macroscopic (solar wind speed, density, magnetic field), but also microscopic properties 
associated with turbulence in the solar wind. However, empirical evidence12 suggests that changes in ( )snδ  are related to 

changes in density. Quantitatively we model this behavior by expressing ( )snδ  in terms of the heliocentric distance r and 

the normalized solar wind density ( ) nrrn 2
0=) .  

( ) ( ) ( ) nr nnrrnnrn ββδδ 0
2

00,
)) −= . (3) 

The characteristic length scale 0r  = 1 AU. The tomography is run using reasonable values for the powers nβ ≈ 0.52,3 

and rβ ≈ 0. The mean scintillation index <m> (and hence the g-level) depends on parameters meann
)

 and meann0δ  

describing the density and density fluctuation in the ‘average’ background solar wind. 

The IPS velocity is defined in terms of the same weight function and small-scale density fluctuations as the g-level: 

( ) ( ) ( ) ( ) ( )∫∫
∞∞

⊥=
0

2

0

2 snsdssVsnsdsW δρδρ . 
(4) 

A more accurate calculation of W is possible using the cross correlation of the IPS signals at different IPS stations. The 
expression used here is consistent with the more accurate calculation to within ≈10 km/s, while significantly reducing the 
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required computational resources15. ⊥V is the component of the solar wind velocity perpendicular to the line of sight at a 
distance s from the observer. 

We introduce a few definitions to arrive at the equations for g and W implemented in the numerical algorithm. First, 

write the background solar wind density meann
)

 (needed to calculate <m>) as: 

( ) ( )snnsn meanmean
mean =)

. (5) 

The constant meann sets the absolute density scale. meann is a dimensionless function defining the shape of the mean 

background solar wind density distribution. Also redefine the normalized density n
)

 to absorb the constants 0nδ , meann0δ  

and meann : 

( ) mean
mean nnnn

n )β
δδη

1
00= . 

(6) 

This ‘modified normalized density’ will be useful later in the discussion of the kinematic solar wind model (Section 4.2). 
Define the ‘γ function’: 

nβηγ 2= . (7) 

Finally, define a new weight function σ that absorbs the dependence on heliocentric distance: 

( ) ( ) ( ) ( )rsrss r
βρβσ −−= 22, . (8) 

With these definitions the equations for g-level and IPS speed W become: 

( ) ( ) ( )( )∫∫
∞∞

=
0

2

0

2 )(,, nsnsdsssdsg meanrr
ββσγβσ  

 

( ) ( ) ( ) ( ) ( ) ( )∫∫
∞∞

=
00

,sin, ssdsssVssdsW rr γβσχγβσ  
(9) 

where we put ( ) ( ) ( )ssVsV χsin=⊥ . ( )sχ is the angle between the direction to the Sun and to the Earth from the position 

at distance s along the line of sight. In Eq. (9) we usually set 1=meann , i.e. we are assuming a background solar wind 

density with a 1/r2 drop-off. 

There are three unknown functions in these equations: γ (or equivalently the normalized density n
)

), the radial solar wind 
outflow speed V, and meann , the shape of the background normalized solar wind density. The first two, γ and V, are the 

ones that we are interested in. The reconstruction problem can be formulated as follows: for a given shape meann  

(specified over the heliospheric volume of interest), and for a given set of g-level and W observations, find the functions 
γ and V that best fits these observations. 

Several points can be made about Eq. (9): 

1. g2 is a more ‘natural’ observational quantity than g itself. Both g2 and W are described in terms of very similar 
integrals, with ( )sγ  and ( ) ( )ssV χsin  specifying the contribution of a line-of-segment at distance s from the 

observer to the observed g-level and IPS speed, respectively. 

2. The nominator and denominator for g and W have the same dependence on heliocentric distance, hence the g-level 
and velocity W will both be nearly independent of solar elongation. 
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3. Both meann and nβ have disappeared. Their influence has been reduced to determining the density scale (Eq. 6) 

together with the unknown constants 0nδ and meann0δ . The solution for γ and V depends explicitly• only on rβ , 

which controls the weighting for the line-of-sight contribution ( )sγ  and ( ) ( )ssV χsin . 

4. For a given shape meann , if the pair of functions Vn,
)

is the solution for a specific meann , then the pair Vn,
)α is the 

solution for meannα for any constant α . 

The last point above implies that for a given set of g-level and W observations the solution for the normalized density n
)

 
is determined only up to constant, i.e., the absolute density scale of the solution cannot be determined from the 
tomographic reconstruction itself. This is not surprising: the g-level, our proxy for the solar wind density, is only a 
relative statement about the state of the solar wind along the line of sight to the IPS source as compared with ‘average’ 
conditions (Eq. 1). What these ‘average’ conditions are, must be established using external information. For instance, the 
density scale can be calibrated against solar wind densities observed in situ at 1 AU near Earth. This external calibration 
defines the relationship between γ and n

)
 in Eqs. (6) and (7), and hence also implicitly defines the constants 0nδ and 

meann0δ . 

3.  THE NUMERICAL ALGORITHM 

The reconstruction task has been reduced to finding the functions γ and V for a given set of g-level and W observations 
satisfying Eq. 9. The normalized density n

)
 follows from γ using Eqs. (6) and (7). 

3.1. Notation: use of subscripts 

In the following the subscripts kji ,, are used when a quantity refers to the 3D heliospheric grid (next subsection) used to 

compute heliospheric γ-function and velocity, and for quantities at the source surface (when only ji, will appear). The 

subscript µ is used to identify a line of sight; while ν refers to a segment at a certain distance from the observer along 

the line of sight. 

3.2. The Remote-Sensing Observations 

The reconstruction is based on a set of obsN line-of-sight observations for both g-level and IPS velocity W. For simplicity 

we assume that there are as many g-level data as there are W data (this will not be the case if g-level and velocity are 
from different observing locations): 

( ) ),1(,2
obs

obsobs
NWg =µµµ . 

(10) 

 ‘Model’ observations are calculated from the latest iterative 3D model of heliospheric γ-function and velocity V, and are 
compared with the actual observations. The purpose of the reconstruction is to create a model 3D heliosphere that 
matches these observations as closely as possible. The ‘model observations’ are given by 

( ) ),1(,2
obs

mdlmdl
NWg =µµµ . 

(11) 

 

Each line of sight is subdivided in losN segments of length µds . The segment length is expressed as a constant in units 

of the Sun-Earth distance. Since for Earth-based observations this distance varies with time, and observations are taken 

                                                           
• However, in Section 4.2 we will see that nβ is still needed in the solar wind model where the implementation of mass 

and mass flux conservation require the calculation of the modified normalized density η from γ  using Eq. 7. 
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at different times, this means that the segment length is different for each line of sight). The distance from observer to the 
center of each line segment is given by: 

( ) ( )obslos NNvdss ,1;,15.0, ==−= µν µµν . (12) 

Typical values are 05.0≈µds  and 40=losN , so that each line of sight extends about 2 AU out from the observer. 

3.3. The Solar Wind Plasma 

The grid used in the reconstruction is regular in heliographic longitude, heliographic latitude, and heliocentric distance, 
and is fixed relative to the Sun (i.e. rotates with the sidereal solar rotation rate, Psid). The range of longitudes covered by 
the grid (360°, i.e. a whole solar rotation), is expressed in terms of the ‘Carrington variable’, c. One unit in Carrington 
variable covers 360° in heliographic longitude. The integer part, ( )cint , is a conventional Carrington rotation number, 

and effectively sets the time period of interest. The fraction is related to the heliographic longitude, 

( ){ })int(1360 cc −−×= oλ  

The range of heliographic longitudes for the grid is set by a start and end ‘Carrington variable’: begc  and endc . Note that 

the grid does not need to start at 0°, i.e. at the exact start of a new Carrington rotation. Associated with the variables begc  

and endc  are the times, begt  and endt  at which the corresponding heliographic longitude crossed the center of the solar 

disk as seen from Earth (or, more general, ‘the observer’). These times determine which observations are used for the 
reconstruction. E.g. all g-level and W observations inside the time interval [ begt , endt ] are included. 

The latitude grid covers the full range −90° to +90°. The radial grid covers the range from the ‘source surface’ at sR to 

some outer boundary at maxR . 

dCicc begi ×−+= )1(  ( ) ( )1−−= cbegend NccdC  ( )cNi ,1=   

dLjl j ×−+−= )1(2
π  ( )1−= lNdL π  ( )lNj ,1=  (13) 

dRkRr sk ×−+= )1(  ( ) ( )1max −−= rs NRRdR  ( )rNk ,1=   

 
Typical values for the grid parameters are Rs = 15 solar radii, Rmax = 3 AU, dR = 0.1 AU,  dC = 1/36 (i.e. 10° in 
heliographic longitude), and  dL = 10°. 

The tomography reconstructs the 3D heliospheric γ function (and its associated normalized density n
)

) and velocity V in 
the grid points of Eq. 13: 

( )rlckjikji NkNjNiV ,1;,1;,1, ,,,, ===γ  (14) 

The lower boundary of the heliospheric grid (k=1), the ‘source surface’, plays a crucial role in the tomographic 
reconstruction. The γ  function and velocity at the source surface are: 

( )lckji
source

jikji
source

ji NjNiVV ,1;,11,,,1,,, ==== ==γγ  (15) 

Specifying the content of these two maps initializes the reconstruction; each iteration is completed by updating them. 

3.4. Discretization of the line of sight integrals 

The calculation of model g-level and IPS velocity W observations requires an integration through the model heliosphere 
along the same directions (lines of sight) as the actual observations (Eq. 9).  In discrete from this becomes:  
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( ) ∑
=

=
losNmdl

Hg
1

,,
2

ν
µνµνµ γ  ∑

=
Κ=

losN
mdl VW

1
,,, sin

ν
µνµνµνµ χ  

(16) 

with weight factors 

∑
=

=
losN

v
vH

1
,,, µµνµν σσ  ∑

=
=Κ

losN

v
vv

1
,,,,, µµµνµνµν γσγσ  

(17) 

where 

( ) ( ) ( )rrss vv
β

µνµµµν ρσσ −−== 22
,,,, . (18) 

The µ-dependence of µ,vs  enters through the µ-dependence of µds (Eq. 12). The function ( )sρ  does not depend on the 

line of sight orientation (i.e. the elongation), but does depend on the distance along the line of sight. 

The heliospheric γ  function and velocity in all line-of-sight segments 

),1;,1(, ,, obslos NNV == µνγ µνµν  (19) 

are obtained by linear interpolation on the 3D γ function and velocity (Eq. 14) at the center positions (Eq. 12) of all line 
of sight segments. 

4.  THE ITERATIVE PROCESS 

4.1. Brief Outline 

The iterative process is started by specifying γ function values and velocity V at the source surface (Eq. 15). Using these 
source surface values the 3D γ function values and velocities (Eq. 14) in the heliospheric grid (Eq. 13) is obtained by 
applying a solar wind model for the propagation of mass from the source surface out into the heliosphere. We assume 
radial outflow and apply simple kinematic arguments to conserve mass and mass flux (Section 4.2). At this stage also 
‘traceback’ information is accumulated which connects each heliospheric grid point to its ‘source location’ at the source 
surface. 

Model line of sight observations (Eq. 11) are calculated by integrating along the appropriate directions through the 3D 
heliosphere. These model values are compared with the actual observations (Eq. 10). This comparison provides the main 
convergence criterion for the iterative process. The observed-to-model ratios for all lines of sight will be used to 
determine the source surface update, completing the iteration.  

All line-of-sight segments are projected back to the source surface using the ‘traceback’ information, carrying along the 
observed-to-model ratio of the line of sight they belong to. At the source surface all the segments of all lines of sight are 
assigned to the nearest grid point. The γ function and velocity in the grid point is then updated by combining observed-
to-model ratios of all line of segments assigned to the grid point. 

We now follow the main steps in this process in detail. 

4.2.   The Kinematic Solar Wind Model 

Given are the γ function values and velocities on the source surface at heliocentric distance sRr =0 (Eq. 15). From these 

we need to reconstruct the γ function values and velocities at ‘higher levels’, i.e. heliocentric distances ( )lk Nkr ,2= . 

The problem is solved by induction. 

Given the γ  values and velocities at level k, the γ values and velocity at level k+1 need to be determined. The connection 
between the levels is established using simple kinematic arguments based on conservation laws. Currently we use 
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conservation of mass and mass flux (though other choices, such as conservation of momentum, are easily implemented). 
Each grid point i,j on level k (Eq. 14) represents a parcel of mass with a modified normalized density kji ,,η  (related to 

kji ,,γ  through Eq. 7) and velocity kjiV ,, . The parcel of mass is assumed to travel radially outward at the local speed. 

When it arrives at level k+1 it has a modified normalized density kji ,,
~η and velocity kjiV ,.

~
. The conservation laws for 

the parcels of mass are (mass and mass flux, respectively) are: 

kjikji ,,,,
~ηη =   

kjikjikjikji VV ,,,,,,,,
~~ηη = . (20) 

In the corotating heliographic coordinate system the parcel will have moved to a larger Carrington variable (smaller 
heliographic longitude). The parcel will arrive at level k+1 at Carrington variable: 

( ) sidkjijisidkjikkkjikji PVdRkcPVrrcc ,,,,,1,,,, ,~ +=−+= +  (21) 

where Psid is the sidereal rotation period of the Sun. Note that the parcel only shifts in longitude, not in heliographic 

latitude. The position kjic ,,
~  will be located somewhere in between two grid points at level k+1. Let these grid points be 

( )jinear ,
~

 and ( )ji far ,
~

, where 1
~~ =− farnear ii . Let grid point ( )jinear ,

~
 be closest to kjic ,,

~ , and define the difference in 

Carrington variable kjikjikji near
ccc ,,

~,,,,
~ −=δ . At level k+1 each parcel of mass is split up in two fractions, which are 

assigned to the neighboring grid points ( )jinear ,
~

 and ( )ji far ,
~

. A fraction kjinear cf ,,1 δ−=  is assigned to ( )jinear ,
~

, and 

the remaining fraction kjifar cf ,,δ=  is assigned to ( )ji far ,
~

. Modified normalized density and velocity at each grid point 

( )ji, , at level k+1 are obtained by collecting all parcel fractions that have been assigned to it. In terms of the 

conservation laws: 

∑∑ ==+
s

kjss
s

kjsskji ff ,,,,1,,
~ ηηη   

∑∑ ==++
s

kjskjss
s

kjskjsskjikji VfVfV ,,,,,,,,1,,1,,
~~ ηηη  (22) 

Solving for η and V: 

∑=+
s

kjiskji f ,,1,, ηη   

∑∑=+
s

kjis
s

kjikjiskji fVfV ,,,,,,1,, ηη . (23) 

Note that the procedure leading up to Eq. 23 implies that the total mass and mass flux present at a given latitude is the 
same at all heights. 

The displacements kjikji cc ,,,,
~ − from Eq. 21 are used to construct a ‘traceback matrix’ S  which connects each 

heliospheric grid point to its origin at the source surface (i.e. the point on the source surface which lies on the same 
stream line as the grid point): 

kjikji
source

kji Scc ,,,,,, +=  (24) 

This ‘traceback matrix’ is needed in the final phase of the iteration to project the line-of-sight observations to the source 
surface (Section 4.4). 

4.3.   Convergence Criterium and Rejection of Outliers 

Improving the model from one iteration to the next is based on a comparison of model observations (Eq. 11) and actual 
observations (Eq. 10). Error estimates for g-levels and IPS velocities W are defined as: 
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( )∑
=

− −=
obsN

g
obsg N

1

212 1
µ

µτσ  
 

( )∑
=

− −=
obsN

W
obsW N

1

212 1
µ

µτσ  
(25) 

where we defined the ratios of observed and model values: 

( ) ( )mdlobsg gg µµµτ
22=  

 

mdlobsW WW µµµτ = . (26) 

These quantities (Eq. 25), estimates of the relative deviation of model values and actual observations, are the best 
convergence criteria available. These should move closer to zero from iteration to iteration. 

The relative differences of model and actual observations for individual lines of sight (normalized to the ‘average 
deviation’ for all sources; Eq. 25) 

( ) g
gg στδ µµ 1−=   

( ) W
WW στδ µµ 1−=  (27) 

are used as a criterion to flag individual observations as bad. If after a specified number of iterations the relative 
difference for an observation is above a certain threshold (typically set to 3 for both g-level and W observations) this is 
used to justify throwing out the data point. The iterative process is then restarted with these ‘outlier’ data points 
removed. 

4.4. Projection to the Source Surface 

To finish the iteration the results from Section 4.3 need to be translated to the source surface. Let the heliographic 
coordinates of the line of sight segments (Carrington variable, heliographic latitude, and heliocentric distance, 
respectively) be: 

µµµ ,,, ,, vvv rlc . (28) 

This location is ‘traced back’ to the source surface using the ‘traceback matrix’ S  (Eq. 24). The traceback value at the 
line of sight segment µ,vS is calculated from a linear interpolation on neighboring heliospheric grid points. The source 

location is then defined by: 

s
source

vv
source
vv

source RrllScc ==+= µµµµµνµν ,,,,,, ;; . (29) 

4.5. Source Surface Updates 

The projected locations (Eq. 29) of all line of sight segments will be scattered across the source surface. For each grid 
element ( )ji,  at the source surface all segments are collected, located within one half grid spacing of the grid element: 

dLlldLldCccdCc ji
source

jiji
source

ji +≤≤−+≤≤− ,,2
1

,2
1

,,2
1

, ; µνµν . (30) 

The ratios in Eq. 26 for these line-of-sight segments are then used to update the source surface γ function and velocity. 
The group of segments near bin ( )ji,  is defined by a group of pairs: 

( ) ji
segmentsaa Na ,,1, =µν . (31) 

The ratios for this group of segments are combined in a weighted mean to obtain a correction factor to the source surface 
values: 
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1
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,,, µνµµν τγγ  

 

∑∑
==
ΚΚ=

ji
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ji
segments
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N

a

N

a
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ji

new
ji VV

,,

1
,

1
,,, µνµµν τ . 

(32) 

I.e., for each segment included in the sum the correction factor τ is weighted proportional to the weight it had in the 
calculation of the model observation. 

Before continuing with the next iteration the new source surface values are smoothed by applying a spatial averaging 
across the entire source surface. The purpose of this is mainly to ‘dampen’ the solution, and thereby improve the stability 
of the iteration process. 

5. ADAPTATIONS AND EXTENSIONS 

The tomographic algorithm formulated in this paper uses IPS remote sensing data (g-level and IPS velocity) to model a 
time-independent solar wind (except for corotation) using a very simple kinematic solar wind model to describe the 
outflow of the solar wind. 

Several adaptations are possible (some of which have already been implemented) to overcome these limitations, and add 
to the capabilities of the technique. 

5.1. Corotating Tomography in Forecast Mode 

In the definition of the spatial grid (Section 3.3) it was tacitly assumed that 1=− begend cc , i.e. that the longitudinal grid 

extends over exactly 360°. It is also assumed that 

kjNkjkjNkj cc
VV ,,,,1,,,,1 , == γγ , (33) 

i.e. γ function and velocity at opposite ends of the grid (360° apart in heliographic longitude) are the same, as one would 
expect. In ‘normal mode’ operation this is indeed strictly enforced. 

Near the ends of the grid (near begc and endc ) line-of-sight segments from observations obtained one synodic rotation 

period of the Sun apart (near begt and endt ) will contribute to the same grid points at the source surface. In ‘forecast 

mode’ these contributions are separated by setting 3=− begend cc , defining a longitudinal grid that covers three 

consecutive Carrington rotations. The symmetry condition Eq. 33 is no longer enforced. In this way a solution is 
obtained in which grid points at larger Carrington variable are dominated by observations from later times. No mixing of 
observations taken one Carrington rotation apart occurs. This provides a simple means of studying slow evolution of the 
quiet solar wind over time scales of one solar rotation within the context of a strictly time-independent technique. 

We use this ‘forecast mode’ to run a real-time space weather forecast project. IPS observations taken by the IPS array 
operated by STELab in Nagoya, Japan, are received at UCSD within one day, and are processed running the corotating 
tomography in forecast mode. A time series at Earth is extracted from the solution. This time series is then used to 
forecast the arrival of corotating structures in the solar wind several days ahead of time (see http://cassfos02.ucsd.edu/ 
solar/index_v_n.html). 

5.2. The Solar Wind Model 

The kinematic solar wind model currently used has the advantage that is simple and computationally cheap, while 
obeying very basic conservation laws. Obviously more realistic descriptions of the solar wind are possible. The solar 
wind model has been intentionally implemented in a modular fashion: the inputs are density and velocity at the source 
surface, the outputs are the 3D solar wind density and velocity, and the ‘traceback’ matrix. In principle any solar wind 
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model can be adapted to replace the kinematic model. We are currently in the process of integrating an MHD16,17 model 
into the tomography. 

5.3. Thomson Scattering Remote Sensing Observations 

Thomson scattering observations (photospheric sun-light scattered from electrons in the solar wind) are an alternative 
source of information about the solar wind. They have the advantage over g-level observations that they are much more 
directly related to the solar wind density. The line of sight integral for the Thomson scattering intensity is: 

( ) ( )∫
∞

=
0

dssnsIB  
(34) 

where I(s) is the scattered intensity from a single electron. I.e. the intensity is a weighted mean along the line of sight of 
the solar wind electron density (which in turn can be easily related to the solar wind mass density assuming a neutral 
solar wind). 

However, the heliospheric Thomson scattering signal is only a small fraction (≤ 1%) of the total white light signal 
observed by a camera in deep space (such as the photometers on the two HELIOS spacecraft, or in Earth-orbit (such as 
the Solar Mass Ejection Imager18). In practice, it is extremely difficult to measure the total heliospheric Thomson 
scattering intensity. Generally, only a differential measure will be available giving the variations in Thomson scattering 
intensity relative to an unknown, smoothly varying Thomson scattering intensity of the ‘quiet’ background solar wind. 

If we divide the solar wind density into two components: 

( ) ( ) ( )snsnsn quiet ∆+=  (35) 

then the differential Thomson scattering measurements provide information only about the small variable part ( )sn∆ . In  

our tomographic algorithm the total density is needed in the solar wind model. The quiet solar wind density is specified 
in terms of a few parameters, e.g. by using a 1/r2 heliospheric density with an assumed, fixed value at 1 AU. With this 
modification Thomson scattering intensity can replace g-levels in the tomographic reconstruction. This has been 
successfully implemented using observations from the photometers on the two HELIOS spacecraft4,5.  

5.4.  Time-Dependent Tomography 

The algorithm presented in this paper applies to a solar wind that is essentially time-independent in the corotating 
reference frame. It is useful primarily to reconstruct the ‘quiet’ or ‘background’ solar wind during periods when the solar 
wind evolves slowly except for corotation. Usually these will be periods around the minimum of the solar cycle. Time 
does not occur explicitly in the formalism of this corotating tomography, and enters only implicitly through the selection 
of data covering a specific Carrington rotation. The basic time-resolution is one Carrington rotation, or about 27 days. 

To analyze transient heliospheric events, such as coronal mass ejections, a tomography is needed that allows for the 
evolution of the solar wind on time scales on the order of days, i.e. the tomography needs to become fully time-
dependent. This introduces the time dimension as an extra independent variable into the reconstruction algorithm. 

The corotating tomography algorithm can loosely be described as a method to add or subtract density and velocity to the 
grid points at the source surface until the resulting time-independent kinematic solar wind model fits the data as well as 
possible. It is fairly straightforward to explicitly add the time dimension as an extra independent variable, and use the 
same approach, only now the source surface grid is three-dimensional, covering time as well as heliographic longitude 
and latitude. The heliospheric grid (Eq. 13) becomes four-dimensional with an extra time dimension: 

dTlTt startl ×−+= )1(  ( ) ( )1−−= tstartstop NTTdT  ( )tNl ,1=  (36) 

Similarly, the conservation laws used in the kinematic solar wind model (Section 4.2) can be extended to account for 
evolution over time. 
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Thus, the corotating algorithm can be extended to cover time-dependent solar wind conditions, such as occur during a 
CME event. This time-dependent tomography has been used to analyze IPS observations and HELIOS Thomson 
scattering observations with time steps on the order of one day19,20. It will play a crucial role in the analysis of Thomson 
scattering data from the recently launched Solar Mass Ejection Imager, which provides near-full-sky coverage over each 
100-minute orbit. 
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